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New Subinterval Selection Criteria for Interval
Global Optimization?
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Abstract. The theoretical convergence properties of interval global optimization algorithms that
select the next subinterval to be subdivided according to a new class of interval selection criteria are

investigated. The latter are based on variants of theRejectIndex: pf ∗(X) = f ∗−F(X)
F(X)−F(X) , a recently

thoroughly studied indicator, that can quite reliably show which subinterval is close to a global
minimizer point. Extensive numerical tests on 40 problems confirm that substantial improvements
can be achieved both on simple and sophisticated algorithms by the new method (utilizing the known
minimum value), and that these improvements are larger when hard problems are to be solved.
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1. Introduction

Consider the bound constrained global optimization problem (Horst and Pardalos,
1995; Törn and Žilinskas, 1987)

min
x∈X f (x) (1)

where then-dimensional intervalX is the search region, andf (x) : Rn → R is
the objective function. We assume that there exists at least one global minimizer
point inX, that is also a stationary point. Problems that have only nonstationary
global minimizer points (necessarily on the boundary of the search region), can
be recognized by interval optimization methods, and they can be solved usually
in a relatively easy way, e.g. by the monotonicity test. The algorithm considered
is based on inclusion functions calculated by interval arithmetic (Ratschek and
Rokne, 1988):

DEFINITION 1. A functionF : In → I is an inclusion functionof the objective
functionf if for ∀Y ∈ In and∀y ∈ Y f (y) ∈ F(Y ), whereI stands for the set of
all closed real intervals.
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In other words,f (Y ) ⊆ F(Y ) wheref (Y ) is the range off overY . The lower
and upper bounds of an intervalY ∈ In are denoted byY andY , respectively. The
width of an interval isw(Y ) = Y − Y , andw(Y ) = maxi (Yi − Yi) if Y ∈ In is an
n-dimensional interval vector (also called a box).I(X) stands for all intervals inX.
Three important types or possible properties of inclusion functions are:

DEFINITION 2. F is said to be anisotone inclusion functionoverX if for ∀Y,Z ∈
I(X), Y ⊆ Z impliesF(Y ) ⊆ F(Z).

DEFINITION 3. We call the inclusion functionF an α-convergent inclusion
functionoverX if for ∀Y ∈ I(X) w(F(Y ))− w(f (Y )) 6 Cwα(Y ) holds, where
α andC are positive constants.

DEFINITION 4. We say that the inclusion functionF has thezero convergence
property, if w(F(Zi)) → 0 holds for all the{Zi} interval sequences for which
Zi ⊆ X for all i = 1,2, . . . andw(Zi)→ 0.

Denote the global minimum value of the functionf (x) on the search regionX
by f ∗. Assume that there exists an isotone inclusion functionF(X) for f (x).

Several Branch-and-Bound (B&B) type algorithms have been suggested and
studied for the solution of (1) utilizing inclusion function information on the prob-
lem (Ratschek and Rokne, 1988; Hansen, 1992; Kearfott, 1996). To allow a general
discussion, we study the following algorithm framework that can incorporate most
of the features of the present procedures.

ALGORITHM
Step 1 Let L be an empty list, the leading boxA := X, and the iteration counter

k := 1. Setf̃ = F(X).
Step 2 SubdivideA into s subsetsAi, (i = 1, . . . , s) satisfyingA = ∪Ai so that

int(Ai) ∩ int(Aj ) = ∅ for all i 6= j where int denotes the interior of a
set. Evaluate the inclusion functionF(X) for all the new subintervals, and
update the upper bound̃f of the global minimum.

Step 3 LetL := L ∪ {(Ai, F (Ai))}.
Step 4 Discard certain elements fromL that cannot contain a global minimum

point.
Step 5 Choose a newA ∈ L and remove the related pair from the list.
Step 6 While termination criteria do not hold letk := k + 1 and go to Step 2.

In Step 4, so called accelerating devices that delete subintervals not contain-
ing a global minimizer point can be used. Such accelerating devices can be for
example the cut-off test (for some implementations it is called midpoint test), the
monotonicity test, the interval Newton step and the concavity test.

Recently many papers (Casado and García, 1998; Casado et al., 2000a; Casado
et al., 2000b) have studied possible ways of utilizing of a new, easy to evaluate
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indicator, theRejectIndex:

pf ∗(X) = f ∗ − F(X)
F(X)− F(X).

These studies have proven that this indicator can provide reasonably reliable in-
formation on how close a subinterval in the search region is to a global minimizer
point. Thepf ∗(X) parameter proved to be a good basis for effective decisions in
load balancing for parallel algorithms (Casado and García, 1998), for a heuristic
rejection criterion solving hard optimization problems that have large memory
complexity (Casado et al., 2000a), and also for finding the most suitable form
of multisection to speed up interval optimization procedures (Ratz and Csendes,
1995; Csendes and Ratz, 1997; Casado et al., 2000b). Now we shall select that
interval with the largestpf ∗ value for subdivision (in Step 5).

The original formulation of this indicator was based on the known value of
the global minimum, which is not always available. We introduce here a new
expression for a wider class of indicators that still keep the basic properties of
pf ∗(X):

p(f̂ ,X) = f̂ − F(X)
F(X)− F(X),

where thef̂ value will be a kind of approximation of the global minimum in
the subsequent theoretical analysis. In the present investigation we assume that
f̂ ∈ F(X), i.e. this estimation is realistic in the sense thatf̂ is within the known
bounds of the objective function on the search region. According to our numer-
ical experience, we need a good approximation of thef ∗ value to improve the
efficiency of the algorithm.

For both expressions, the denominator has a crucial role, and it is where the
new selection rules differ from the earlier ‘choose the subinterval with the lowest
lower bound’ rule (Skelboe, 1974; Moore and Ratschek, 1988). The denominator,
F(X) − F(X) is nonnegative due to the properties of the inclusion functions.
Theoretically it can also be zero, if either the width of the argument interval is
zero, or if the objective function is constant on a positive measure interval. If
the search region is a positive measure interval, then the subdivision may produce
only positive measure subintervals. It still may happen that one of the accelerating
devices (like the monotonicity test) will decrease an interval to a lower dimensional
one. Except in constrained problems, not considered here, the possibility that the
objective function is constant on a positive measure interval cannot be excluded,
although it seems to be not very likely in real life (Moore and Ratschek, 1988).

For both cases the computational implementation may provide a kind of remedy
due to the generally applied outward rounding technique, that always produces a
positive width inclusion function value. Still the correct solution of these types of
problems is to introduce a result list containing those subintervals for which either
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the width of the intervalw(X) or the width of the inclusionF(X) is smaller than
a preset positive constant according to the actual machine precision. In the sequel
we assume that such a technique exists, and in this way the denominator in the
expression of thep(f̂ ,X) parameter cannot be zero.

The numerators ofpf ∗(Y ) andp(f̂ , Y ) are not as dangerous, still they deserve
some discussion. For some rare but significant problems the lower bound of the
objective function on nearly all relevant subintervals can be equal to the global
minimum causingpf ∗(Y ) and thus alsop(f ∗, Y ) to be zero, inhibiting an effective
interval selection. Such problems arise for example when the zeros of a function
g(x) must be determined by minimizingf (x) = g(x)2, like in some phase equi-
librium problems (Stateva and Tsvetkov, 1994). For such problems the suggested
interval selection technique is obviously not advantageous.

In Section 2 the convergence properties of a class of interval branch-and-bound
optimization methods that use some variants of this indicator as selection criteria
for choosing the next leading subinterval to be subdivided are investigated.

2. Theoretical Results

2.1. CONVERGENCE OF ALGORITHM VARIANTS

To investigate the convergence properties of the introduced Algorithm, we assume
that the stopping conditions cannot be fulfilled. For example, if these are the often
usedw(F(Y )) < ε1 andw(Y ) < ε2 for a leading intervalY , or for all the intervals
on the listL, then we setε1 = ε2 = 0. The introduced algorithm will be stud-
ied without accelerating devices. Wherever it is applicable, the properties of the
algorithm with accelerating tests will be discussed separately.

The global minimum value is not always available. Thus we use an updated ap-
proximationfk of f ∗, wherek is the iteration number, for the generalizedp(fk,X)
algorithm parameter. The following theorem investigates the case when the inter-
val selection criterion parameterfk converges to a valuêf larger than the global
minimum.

THEOREM 1. Assume that the inclusion function of the objective function is
isotone, it has the zero convergence property, and thep(fk, Y ) parameters are
calculated with thefk parameters converging tôf > f ∗, for which there exists a
point x̂ ∈ X with f (x̂) = f̂ . Then the branch-and-bound algorithm that selects
that intervalY from the working list which has the maximalp(fi, Z) value can
converge to a point̂x ∈ X for which f (x̂) > f ∗, i.e. to a point which is not a
global minimizer point of the given problem.

Proof.1. Consider first the case whenfk = f̂ is constant. Assume that a prob-
lem minx∈X f (x) is given for which the studied algorithm has an infinite number
of iterations. Such problems exist, see e.g. the problem

min
x∈[−1,1]

x2.
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Since the accelerating devices are switched off, no subinterval will be deleted.
Choose an arbitrary point̂x ∈ X such thatf (x̂) = f̂ , and consider the interval

sequence{Xi} that starts fromX (X0 = X), and converges tôx according to the
interval subdivision rule of our algorithm. The interval sequence{Xi} is unique
having a fixed, deterministic interval subdivision rule in our algorithm (with the
exception when̂x is on the boundary of a generated subinterval).

Obviouslyfk = f̂ ∈ F(Xk) holds for allXk members of the interval sequence
{Xi}, and thusfk − F(Xk) > 0. In a similar way,fk − F(Y ) > 0 for all the
subintervals that contain global minimizer points. Thus both sets of subintervals
have the same signs of the respectivep(fk,X) values.

The inclusion functions of the original problem will be constructed in such a
way, that while keeping the usual properties of the inclusion functions, thep(f̂ ,Xi)

values will be 0.9 for all of the intervals of the subsequence{Xi} defined above,
and 0.5 for all other subintervals.

For the starting boxX, setF(X) to be[f̂ − 9d(X), f̂ + d(X)], whered is a
suitable value:d(X) = max(f (X)−f̂ , f̂−f (X)). For this intervalf (X) ⊆ F(X)
obviously holds. For thoseXi subintervals which contain̂x, the inclusion function
will be F(Xi) = [f̂ − 9d(Xi), f̂ + d(Xi)]. For all other subintervals the inclusion
function will be set toF(Y ) = [f̂ − d(Y ), f̂ + d(Y )].

Check the properties of the defined functionF(Y ):
Inclusion: These definitions give inclusion functions in each case, since for all

x ∈ Y the valuef (x) differs from f̂ at most byd(Y ). While in the last mentioned
case, i.e. when̂x /∈ Y , f (Y ) = F(Y ) can happen, for subintervals of the sequence
{Xi} the range of the function is always substantially overestimated byF(Xi). On
the other hand, this overestimation depends directly on the width of the range of
f (X).

Isotonicity:The defined inclusion function will be isotone, since it will change
together with the rangef (Xi) of the related intervals if they contain̂x: Xi+k ⊆
Xi → F(Xi+k) ⊆ F(Xi). When passing from such intervals that containx̂ to
subintervalsY for which x̂ /∈ Y , isotonicity will be ensured by the construction:

[f̂ − d(Y ), f̂ + d(Y )] ⊆ [f̂ − 9d(Xi), f̂ + d(Xi)]

if Y ⊆ Xi due to the factor 9 in the definition and to the inclusion property of the
range of a function. For two subintervalsY1 andY2, for which f̂ /∈ Yi (i = 1,2),
andY1 ⊆ Y2, the respectived values are also nondecreasing, i.e.d(Y1) 6 d(Y2).
This ensures the inclusion isotonicity for such intervals.

Zero convergence ofw(F(Xi)) for interval sequences withF(Xi) → f̂ : For
such interval sequences the values ofd(Xi) converge to zero, sinceXi → x̂, and
thusw(Xi) → 0. For all {Yi} interval sequences for which limF(Yi) 6= f̂ , this
property cannot hold in our example, since a positive distance tox̂ causes positive
d values, and thusw(F(Yi)) cannot converge to zero — not even for cases when
w(Yi)→ 0.
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α-convergence:According to the previous paragraph,α-convergence can only
be expected for interval sequences for whichF(Xi)→ f̂ . Theα-convergence re-
quires either assumptions on the interval arithmetic, or on the properties of the un-
derlying function. In the present case, e.g.α-convergence can be proved withα = 1
if f (x) is Lipschitz continuous with the Lipschitz constantM. Then |f (y1) −
f (y2)| 6 M|y1− y2| for y1, y2 ∈ Y impliesw(F(Y )) 6Mw(Y ), and for an inter-
val sequence{Yi} with limi→∞w(Yi) = 0, the inequalitiesw(F(Yi)) 6 Mw(Yi)

hold for all i = 1,2, . . .
Having all the necessary properties, we can conclude that the defined inclusion

function will result in interval selection decisions in the algorithm, such that only
those intervals will be processed further that havep(f̂ , Y ) = 0.9 values, and these
converge tox̂, for which f (x̂) 6= f ∗. Since there exists no subsequence of the
leading subintervals that converges to a point with an objective function value
different from f̂ , the missing zero convergence property for these subsequences
does not cause any theoretical difficulties.

2. For the case whenfk is not constant, we can use the same construct, and to
have the necessary properties, the inclusion functionF(X) will be defined again
on the basis off̂ (and not onfk). After a finite number of iterations the subinter-
vals containing the target pointx′ will be selected as before since the difference
betweenfk andf̂ will be small enough to ensure largerp(fk, Y ) values for these
subintervals. 2

Together with the constructed problem, there exist obviously an infinity of prob-
lems for which the algorithm does not converge to a global minimizer point: e.g.
the constructed problem can be transformed to a new one by shifting the objective
function (and also the respective inclusion function) by a constant:fnew(x) =
f (x)+ f0, wheref0 6= 0 is an arbitrary real constant.

Notice that the easy to implement and cheap cut-off test and the zero conver-
gence property can be sufficient to ensure convergence to global optimizer points
even if the sequence{fi} does not converge tof ∗: for all interval subsequences of
the leading intervals, if the sequences converge to a point for which the objective
function value is greater thanf ∗, then the zero convergence property will imply
f (Zi) > f̃ , i.e. such boxes will be deleted.

To consider the case whenfk converges tof̂ < f ∗, we must assume that the
inclusion functionF(Y ) has the zero convergence property. This is a natural as-
sumption, all the usual techniques have this theoretical feature, and at least the con-
vergence of the lower bounds to the respective real function value is indispensable
for the convergence of branch-and-bound algorithms.

THEOREM 2. Assume that the inclusion function of the objective function has
the zero convergence property, andfk converges tof̂ < f ∗. Then the optimization
branch-and-bound algorithm will produce an everywhere dense sequence of subin-
tervals converging to each point of the search regionX regardless of the objective
function value.
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Proof. Sincefk converges tof̂ < f ∗, fk < f ∗ holds with the exception of a
finite number of iterations. The convergence of the algorithm will not be affected by
thosefk values larger than the global minimum. The first iterations of our algorithm
will process all of those subintervals on which the inclusion functionF(Y ) may
excessively overestimate the respective ranges, and thusF(Y ) 6 fk < f ∗ may
occur. LaterF(Y ) > fk holds for each subintervals, and hencep(f̂ , Y ) will be
necessarily negative.

Assume that the algorithm has an interval subsequence converging to a point
x ∈ X. According to our earlier assumption, such a sequence must exist. Then due
to the zero convergence property of the inclusion functionF(Y ) the denominator
of thep(fk, Y ) parameter will converge to zero, and thusp(fk, Y ) will converge
to minus infinity. This is the reason why no subintervalY ′ of the search regionX
may remain in the listLwith a positive width: the valuep(fk, Y ′)must become the
largest in a certain iteration cycle, and thus it will be selected for further subdivision
according to the interval selection rule, choosing the subinterval with the maximal
p(fk, Y ) value. 2
THEOREM 3. Assume that the inclusion function of the objective function is
isotone and it has the zero convergence property. Consider the interval branch-
and-bound optimization algorithm that uses the cut-off test, the monotonicity test,
the interval Newton step and the concavity test as accelerating devices, and that
selects as next leading interval that intervalY from the working list which has the
maximal p(fi, Z) value. A necessary and sufficient condition for the convergence
of this algorithm to a set of global minimizer points is that the sequence{fi} con-
verges to the global minimum valuef ∗ and there exist at most a finite number of
fi values belowf ∗.

Proof. 1. Consider first the sufficiency of the conditions. Assume that the con-
ditions of the theorem are fulfilled, and still the sequence of leading intervals
generated by the interval optimization algorithm has a subsequence,{Xi} (i =
1,2, . . . ), that converges to a pointx′ for whichf (x′) > f ∗, i.e.x′ is not a global
minimizer point.

Sincew(Xi) → 0, andw(Xi) → 0 impliesw(F(Xi)) → 0, andfi → f ∗,
there exists such a positive integerk thatF(Xi) > fi holds for alli > k. In this
way the value ofp(fi,X) is negative for suchi indices.

It is assumed that the search regionX contains a global minimizer point that
is also a stationary point. An interval containing such a stationary point can be
subdivided, but cannot be deleted by any accelerating device, since
(a) the lower boundF(Y ) cannot be larger thañf > f ∗ (cutoff-test),
(b) the objective function cannot be strictly monotonic onY (monotonicity test),
(c) the interval Newton step must give a resultN(Y ) such thatN(Y )∩ Y 6= ∅ due

to the existence of a minimizer point inY , and finally
(d) the objective function cannot be strictly concave on the whole intervalY (con-

cavity test).
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Since after subdivision one of the resulting subintervals contains the stationary
point, there must exist at each iteration a subintervalY containing a stationary
point y∗ such thatf (y∗) = f ∗. For this intervalF(Y ) 6 f ∗ must hold due to the
properties of the inclusion function, and hence we obtainf ∗ − F(Y ) > 0, i.e. a
nonnegativep(fi, Y ) value forfi parameters not smaller thanf ∗. Forfi < f ∗ the
correspondingp(fi, Y ) values can be negative.

Consequently an interval with a nonnegativep(fi, Y ) value must be always on
the work list (with the exceptions of at most a finite number of iteration cycles),
and in each such iteration it must be compared with other intervals during the se-
lection of the next leading interval. For some iterations whenj > k, the algorithm
preferred members of the{Xi} interval sequence (having negativep(fj,Xj ) values
for j > k) compared toY . Sincep(fi, Y ) is almost always nonnegative, this fact
contradicts the selection rule choosing always the subinterval with the maximal
p(fi,X) value.

This contradiction implies that the sequence of leading intervals generated by
our algorithm cannot contain such a subsequence that would converge to a point
having larger objective function value thanf ∗.

2. The necessity of the first condition (i.e. that the sequence{fi}must converge
to the global minimum valuef ∗) was proved in Theorem 1. We prove here that it is
necessary to have the convergence of the algorithm to the set of global minimizer
points that at most a finite number offk values can be belowf ∗. Without this a
counter example could be constructed.

Consider a problem for whichf (x′) > f ∗ = 0 for an x′ ∈ X, and there exists
a subintervalY ⊆ X, for which f (y) = f ∗ = 0 holds for eachy ∈ Y . It is
obvious that thep(fi, Y ′i ) values will converge to minus infinity as the subintervals
Y ′i converge tox′, since the numerator ofp(fi, Y ′i ) will remain negative fori > k,
and the denominator converges to zero from above. Having a fixed sequence of
{fi}, the lower boundsF(Yi) of the subintervalsYi within Y can be set in such
a way that the resultingp(fi, Yi) values will be less than thep(fi, Y ′i ) value for
the subinterval containing thex′ point. This can be done even in accordance with
the required inclusion isotonicity and zero convergence properties of the related
inclusion function. 2

As an immediate consequence of the statement of Theorem 3, the following
corollaries can be stated:

COROLLARY 1. If our algorithm applies the interval selection rule of maximiz-
ing thep(f ∗, X) = pf ∗(X) values for the members of the listL (i.e. if we can use
the known exact global minimum value), then the algorithm converges exclusively
to global minimizer points.

COROLLARY 2. If our algorithm applies the interval selection rule of maximiz-
ing thep(f̃ ,X) values for the members of the listL wheref̃ is the best available



CONVERGENCE OF NEW INTERVAL METHODS 315

upper bound for the global minimum,and its convergence tof ∗ can be ensured,
then the algorithm converges exclusively to global minimizer points.

REMARK 1. Notice that maximizing thep(fi,X) value when selecting the next
subinterval to be subdivided is similar to minimizing theF(X) value for the subin-
tervals at hand. For constant denominatorF(X) − F(X) and for fixedfi = f ∗
values the same subinterval sequence will be selected by the two algorithm ver-
sions.

REMARK 2. In real life situations, either the global minimum value is known at
least approximately, or the updated best upper bound of it, thef̃ parameter can
be used in thep(f̂ ,X) expression. The first case is the less probable, still there
exist problems where the optimum value is a priori known, only the location of the
global minimizer points is to be determined. Both approaches forf̂ are realistic
and allow convergence in the above strong sense.

REMARK 3. Notice that Theorem 3 was proved withoutα-convergence assumed
for the inclusion function, although the typical implementations (natural extension
or higher order central forms) have this property. On the other hand, the zero
convergence property was directly used in the proof.

The consequences of Theorems 1, 2 and 3 are that the user must either set
fk = f̂ to be the known exact global minimum (when available), or use the updated
best current upper limit of it provided by the algorithm itself:fk = f̃ . Larger set
constants asfk = f̂ > f ∗ may cause convergence to not optimal pointsx′ with
function valuesf̂ > f (x′) > f ∗. Whenfk are set to a constant smaller than
the global minimum:fk = f̂ < f ∗, the algorithm will simply subdivide every
subinterval, converging thus to all points within the search regionX.

According to earlier numerical experiences (Casado et al., 2000a), but also ac-
cording to other preliminary computational tests on the usability of thepf ∗(f̂ , X)
parameter in the selection criterion, the new rule is used best together with the
Moore–Skelboe selection criterion (Skelboe, 1974; Moore and Ratschek, 1988).
In other words, that subinterval must be selected for the next iteration which has
largepf ∗(fi, X) value and nearly minimalf (X) lower bound. To combine the two
criteria, a smooth utility functionu(x, y) : R2→ Rwill be applied, and that subin-
terval will be considered for the next iteration, for whichu(pf ∗(fi, X),−F(X))
is maximal. Theorem 4 characterizes the convergence properties of the studied
interval branch-and-bound algorithm with such a compound selection criterion.

THEOREM 4. Assume that the inclusion function of the objective function is
isotone and it has the zero convergence property. Consider the interval branch-
and-bound optimization algorithm that selects as next leading interval that interval
Y from the working list which has the maximalu(p(fi,X),−F(X)) value.

1. Sufficient conditions for the convergence of this algorithm to a set of global
minimizer points are that the sequence{fi} converges to the global minimum value
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f ∗, there exist at most a finite number offi values belowf ∗ and that the utility
functionu(x, y) is strictly monotonically increasing in both of its arguments.

2. On the other hand,fi > f ∗ + δ for a δ > 0 allows convergence to a
nonoptimal point even for the class of defined utility functions.

Proof.1. Following the lines of thought of the proof of Theorem 3, assume that
although the conditions of Theorem 4 are fulfilled, there exists a subsequence{Xi}
of the leading intervals that converges to a pointx′ ∈ X for which f (x′) > f ∗
holds, i.e.x′ is not a global minimizer point.

It is again assumed that the search regionX contains a global minimizer point
that is also a stationary point. A subinterval containing such a stationary point
cannot be deleted according to the proof of Theorem 3. Thus after every iteration
cycle, there must exist a subintervalYi that contains such a stationary pointy with
f (y) = f ∗. For these subintervalsF(Yi) 6 f ∗ must hold due to the properties of
the inclusion function, and hence we obtainf ∗ − F(Yi) > 0, i.e. a nonnegative
p(fi, Yi) value forfi parameters not smaller thanf ∗. For a finite number of iter-
ation cycles whenfi < f ∗, the respectivep(fi, Yi) values can be negative. Thus
after a sufficiently large number of iterations

u(p(fi, Yi),−F(Yi)) > u(p(fi, Y ′),−F(Y ′))
holds for the leading subintervalY ′i containingx′ due to the monotonicity property
of u. However, this inequality does not allow selection of subintervals containing
the supposed accumulation pointx′.

Thus the sequence of leading intervals generated by our algorithm cannot con-
tain such a subsequence that would converge to a point having larger objective
function value thanf ∗.

2. Consider now the case whenfi > f ∗ + δ for aδ > 0. Choose such ax′ ∈ X,
for which f (x′) = f ∗ + δ, and a utility function, for which an arbitrary large
function value can be reached by a proper first argument (as e.g.u(x, y) = ax+by
with a, b > 0). Although an interval sequence converging tox′ has smalleru values
than that belonging to the global minimizer point, these values can be increased
with the redefinition of the inclusion function as in the proof of Theorem 1. In
this way, it can be achieved that the interval selection step will choose the interval
sequence converging tox′. 2

The mild condition on the utility function allowsu to be linear with positive
coefficients:u(x, y) = ax + by with a, b > 0, or e.g. to useu(x, y) = xy. With
the first utility function we can weight the two underlying criteria: sincepf ∗(Y )
is scaled to have values between zero and one,−F(Y ) should be divided e.g. by
w(F(X)) to have a balanced decision. With this weighting our decision will be
invariant against linear transformations of the objective function. Utility functions
that are constants in one of their arguments do not fit Theorem 4, albeit these ensure
convergence, since they realize simply one of the underlying interval selection
criteria.
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In an earlier paper (Casado et al., 2000a) the following theorem was proved for
thepf ∗(X) parameter and for the traditional Moore–Skelboe algorithm variant:

THEOREM 5. Assume that for an optimization problemmin
x∈X f (x) the inclusion

functionF(X) off (x) is isotone, andα-convergent with given positive constantsα
andC. Assume further that thepf ∗ parameter is less than 1 for all the subintervals
ofX. Then an arbitrary large numberN(> 0) of consecutive leading intervals of
the basic B&B Algorithm that selects the subinterval with the smallest lower bound
as next leading interval may have the properties that:
1. none of these processed intervals contains a stationary point, and
2. during this phase of the search thepf ∗ values are maximal for these intervals.

Although Theorem 5 investigates a different algorithm with another interval
selection rule, its statement is still interesting for our problem: using the overestim-
ation property typical for inclusion functions, one can construct problems that have
an arbitrary long sequence of consecutive leading intervals with maximalpf ∗(X)
values. In other words, it is possible to find problems for which thepf ∗(X) value
can be diverted for an arbitrary long sequence of leading intervals.

2.2. APPROXIMATIONS OF THE GLOBAL MINIMUM

According to the last subsection, the availability of a sequence converging to the
global minimum is indispensable, the present subsection is devoted to investiga-
tions how such sequences can be obtained. The common estimator of the global
minimum is the updated upper bound of it:

f̃k = min{f̃k−1, F (A1), ..., F (Ai)}, (2)

whereA1, A2, . . . , Ai are the result subintervals after subdividing the leading in-
tervalA in the iteration cyclek, andf̃0 = F(X). In the Moore–Skelboe algorithm
f̃k converges to the global minimum from above (Ratschek and Rokne, 1988).

Another source of information on the global minimum value is the lower bound
of the objective function on the leading interval. It can be formulated as

F(Ak), (3)

whereAk is again the leading interval in the iteration cycle numberk. The Moore–
Skelboe algorithm always selects a subinterval from the working list on which the
objective function has the minimal lower bound, and these lower bounds converge
to the global minimum (Ratschek and Rokne, 1988).

For the further investigation we call our optimization algorithm as defined in the
introduction with the interval selection based purely on thepf (fi,X) parameter
asAlgorithm 1, and that with the interval selection according to the utility function
u asAlgorithm 2.
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ASSERTION 1. Thef̃k and theF(Ak) parameters as defined in (2) and (3), do
not necessarily converge to the global minimum valuef ∗ for Algorithm 1 and
Algorithm 2.

Proof.As it was shown in the proofs of Theorems 1 and 4, Algorithms 1 and 2
may converge exclusively to nonoptimal points (tox′ such thatf (x′) > f (x∗)). In
these cases̃fk can converge tof (x′), or can remain constant (abovef (x′)) after a
certain iteration index. On the other hand,F(Ak) converges exclusively tof (x′).
Anyway, these parameters do not necessarily converge to the global minimum
value. 2

In spite of the negative results of Assertion 1, there remain plenty of ways to
have an updated estimate of the global minimum value: we can use a random
sampling of the search region, we can utilize the lower bounds of the intervals
in the working list, and we can also run local search procedures to improve the
available estimate of the global minimum value. Also a proper combination of the
above techniques can give a converging estimate.

3. Numerical Tests

The numerical tests were carried out on a dual processor Pentium-II computer
(233 Mhz, 128 Mbyte) under the Linux operating system. The programs were
coded in C++. The inclusion functions were implemented via the PROFIL/BIAS
routines (Knüppel, 1993), and the basis algorithm was that of the C++ Toolbox for
Verified Computing (Hammer et al., 1995). The standard time unit (the CPU time
required to evaluate the Shekel 5 test function 1000 times at(4.0,4.0,4.0,4.0)T )
was 0.00209 seconds.

In our computational experiments we have used the following global optim-
ization test problems: Shekel-5 (abbreviated as S5), Shekel-7 (S7) and Shekel-10
(S10), Hartman-3 (H3), Hartman-6 (H6), Goldstein-Price (GP), Six-Hump-Camel-
Back (SHCB), Three-Hump-Camel-Back (THCB), Branin RCOS (BR), Rosen-
brock (RB), 5-dimensional Rosenbrock (RB5), Levy-3 (L3), Levy-5 (L5), Levy-8
(L8) to Levy-16 (L16), Levy-18 (L18), Schwefel-2.1 (Sch21), Schwefel-3.1
(Sch31), Schwefel-2.5 (Sch25), Schwefel-2.7 (Sch27), Schwefel-2.14 (Sch214),
Schwefel-2.18 (Sch218), Schwefel-3.2 (Sch32), Schwefel-3.7 (Sch37 in the 5 and
10 dimensional form), Griewank-5 (G5), Griewank-7 (G7), Ratz-4 to Ratz-8 (R4
to R8), and EX2 from (Csendes and Ratz, 1997). The search regions were the same
as in other numerical tests (Törn and Žilinskas, 1987; Hansen, 1992; Ratz and
Csendes, 1995; Csendes and Ratz, 1997). Although we used standard global op-
timization test problems, the test set is of course limited, and thus the computational
results must be interpreted with care.

The goal of the computational test was to demonstrate the effect of, changing the
old interval selection rule to the new one, selecting that subinterval which has the
maximalpf ∗ parameter value. It was the only difference between the algorithm
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variants (denoted by old and new). The new algorithm utilized the known min-
imum value to determine a global minimizer point. The numerical testing of those
algorithms variants which use certain̂f approximations of thef ∗ value remains
for a later study.

For some test problems (e.g. L8, to L11) the minimum value was zero, and the
minimum of the lower bounds of the inclusion functions was also zero due to the
sum of squares function forms. In the case of these problems, the old algorithm
will select only such subintervals for whichF(Y ) = 0. For the same subintervals
the respectivepf ∗ values are also zero, and thus larger than the negativepf ∗ val-
ues of all other subintervals. Hence the two algorithm versions produce the same
results in terms of the maximal list length necessary and of the number of function
evaluations too. In these cases also the required CPU time was nearly the same.

3.1. DERIVATIVE FREE ALGORITHMS

First the basic algorithm with only the cut-off test was run in these two versions.
For these procedures no derivative information was necessary. We used the tradi-
tional bisection and the subdivision was made along the coordinate direction with
the longest edge. These simple algorithms were stopped when the diameter of a
candidate interval was smaller than 0.01, or if the length of the working list reached
20,000. This memory limitation is far from the physical one, still above this level, a
larger and larger part of the computation must be spent on administration in contrast
to function evaluations. The numerical results are demonstrated in Table 1.

The test problems can be classified into 3 groups according to Table 1. The
first group is of those problems for which the change in the interval selection does
not cause any difference in the efficiency indicators of CPU time (CPUt), maximal
list length reached (MLL) and number of function evaluations (NFE). The second
group contains problems which could not be solved by the old method below MLL
= 20,000. There was no such instance when the old technique would have allowed
a solution with MLL< 20,000, while MLL was 20,000 for the new one. In this
sense, the new suggested method is certainly better. The third group contains the
rest of the problems.

In the case of the second group, the efficiency indicators are not reliable, since
the quality of the solutions can be quite different, depending on the phase in which
the memory limitation canceled the search. Even though it is true, still we can
confirm that in each case the quality of the solution provided by the new method
was better, and thus the real efficiency improvements can be even better than what
could be found in Table 1. The implementation of the new interval selection rule
resulted in more than 2 order of magnitude better CPU time for the test prob-
lem Goldstein-Price, much less memory complexity, and in 95% less function
evaluations. The Six-Hump-Camel-Back problem was quite difficult for the old
algorithm, but it could be solved just below the 20,000 memory limitation. Still the
efficiency indicators for this problem are very similar to those of the second group.
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Table 1. Numerical results for the basic algorithm with only the cut-off test. The given efficiency
indicators are the required CPU time in seconds (CPUt), the maximal list length necessary (MLL),
and the number of objective function evaluations (NFE). The last two lines contain summarized
figures for those problems which could be solved by both algorithms with MLL less than 20,000.
6 denotes the sum of the given efficiency indicator for the old and new algorithms, followed by the
relative compound indicator for the new method compared to that of the old one as per cents. The
last line contains the average of the percentages (AoP) for the respective columns.

Problem CPUt MLL NFE

name dim. old new old new old new

% % %

S5 4 0.42 0.40 95 11 11 100 184 173 94

S7 4 1.37 1.05 77 45 40 89 434 330 76

S10 4 2.19 1.09 50 53 30 57 490 244 50

H3 3 965.08 24.89 3 20,000 2,383 12 95,723 11,930 12

H6 6 1,411.88 1,083.41 77 20,000 20,000 100 90,357 80,230 89

GP 2 2,639.30 14.00 0 20,000 2,145 11 179,045 8,579 5

SHCB 2 1,131.44 2.40 0 19,812 2,383 12 142,618 3,883 3

THCB 2 9.18 4.92 54 1,128 1,348 120 16,693 5,457 33

BR 2 0.10 0.03 30 18 11 61 415 118 28

RB 2 0.02 0.02 100 10 10 100 135 135 100

RB5 5 7.94 8.01 101 56 56 100 6,919 6,919 100

L3 2 1,279.42 0.36 0 20,000 72 0 101,919 376 0

L5 2 1,235.80 0.17 0 20,000 37 0 99,698 162 0

L8 3 0.07 0.07 100 8 8 100 83 83 100

L9 4 0.15 0.15 100 11 11 100 111 111 100

L10 5 0.29 0.29 100 14 14 100 139 139 100

L11 8 1.13 1.13 100 23 23 100 227 227 100

L12 10 2.20 2.18 100 29 29 100 283 283 100

L13 2 0.03 0.03 100 7 7 100 80 80 100

L14 3 0.08 0.08 100 10 10 100 120 120 100

L15 4 0.17 0.17 100 13 13 100 159 159 100

L16 5 0.28 0.28 100 16 16 100 183 183 100

L18 7 0.71 0.71 100 22 22 100 255 255 100

Sch21 2 0.31 0.31 100 44 44 100 927 927 100

Sch31 3 0.06 0.06 100 7 7 100 112 112 100

Sch25 2 0.05 0.05 100 7 7 100 223 223 100

Sch27 3 402.37 410.82 102 5,706 5,706 100 64,580 64,580 100

Sch214 4 0.65 0.66 102 81 81 100 1,283 1,283 100

Sch218 2 9.42 0.06 1 678 78 12 15,399 311 2

Sch32 3 0.07 0.07 100 12 12 100 198 198 100

Sch37 5 0.01 0.01 100 2 2 100 7 7 100

Sch37 10 0.01 0.01 100 2 2 100 7 7 100

G5 5 8.02 8.04 100 32 32 100 6,175 6,175 100

G7 7 0.79 0.79 100 43 43 100 349 349 100

R4 2 1.85 0.09 5 616 73 12 3,851 364 9

R5 3 0.37 0.38 103 68 68 100 483 483 100
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Table 1. Continued

Problem CPUt MLL NFE

name dim. old new old new old new

% % %

R6 5 1.38 1.38 100 72 72 100 731 731 100

R7 7 5.04 5.10 101 202 202 100 1,363 1,363 100

R8 9 11.93 12.12 102 314 314 100 1,995 1,995 100

EX2 5 1,097.19 966.16 88 20,000 20,000 100 90,390 89,274 99

6 1,600.10 462.96 29 29,172 10,785 37 267,211 98,007 37

AoP 86 90 85

For the first and third group, we have summarized the efficiency indicators in
the last two lines of Table 1. Thus altogether 1,600 seconds was necessary for the
solution of these problems with the old, and 463 seconds with the new algorithm.
This means a 71% improvement, i.e. so much less time is needed if a similar set of
problems should be solved, and we decide to use the new algorithm. If we consider
the average relative improvement on these problems (which emphasizes the easier
problems), then the CPU time saving to be expected on a problem which is similar
to those in the given set is about 14%.

The sum of the necessary number of list members cannot be identified easily
as a physical quantity, since the problems are usually solved separately, still it can
express the total memory complexity of the given set of problems. The summed
up MLL numbers was 29,172 for the old, and 10,785 for the new algorithm. This
means a 63% improvement. The average of the percentages for the single problems
is 90% meaning a 10% improvement for the new method. It is worth mentioning
that with only one exception the new algorithm always required less or the same
computer memory as the old one.

The total sum of function evaluations was 267,211 for the old, and 98,007 for
the new algorithm. This is 63% improvement, while the average of percentages is
85%, showing 15% relative improvement. The sum of function evaluations is one
of the most important efficiency indicators, since the usual assumption is that the
test problems are close to real life problems in terms of difficulty of solutions while
the test problem functions are quickly computable.

Summarizing the numerical experiences with the simple algorithm variants, we
can conclude that the new method is definitely much better than the old one at least
on the given test problems. We have found for these instances that the more difficult
a problem, the more improvement can be achieved by the new technique, while no
significant worsening is to be anticipated for easier problems. We must stress that
the improvements are obviously not uniform: results on a few test problems can
explain the majority of improvements on the test set. It is not unusual that new
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techniques can improve simple algorithms. The following subsection shows the
improvements caused by the new method on a sophisticated algorithm variant.

3.2. ALGORITHM VARIANTS WITH ALL ACCELERATING DEVICES

In the second part of the numerical tests we used several sophisticated accelerating
devices and other algorithmic changes that were investigated recently (Markót et
al., 2000). Now both algorithm variants used the cut-off test, the monotonicity test,
the concavity test and also interval Newton steps. The interval arithmetic based
inclusion functions are now improved (when possible) by centered forms. A multi-
section scheme with 3 subintervals and with the subdivision direction selection
rule C (ibid.) was applied. The gradients and Hessians were generated by forward
mode automatic differentiation. The algorithms were stopped when the diameter
of a candidate interval was smaller than 10−8. This time all test problems could be
solved in the regular way, thus no additional stopping criterion had to be given on
the working list length. The numerical results are demonstrated in Tables 2–3.

This time all the test problems were solved by all algorithm variants (in spite
of the much more difficult stopping criterion), so no grouping of the problems is
necessary, the discussion of the results is simpler. The total CPU time necessary to
solve the 40 test problems was 830 seconds for the old, and 334 seconds for the
new algorithm, meaning a 60% improvement. The relative improvement expressed
as the average of percentages was 14%. The difference in the absolute figures was
basically caused by the results on the problem EX2, that proved to be the most
difficult to solve.

The sum of the list lengths was 4,608 for the old, and 4,941 for the new method.
That is, the old algorithm proved slightly (by 7%) better for once. The average of
percentages indicates a one per cent improvement for the new method. Here again,
it was the problem EX2 that explains the majority of the difference. The changes
in the memory complexity are moderate.

The sum of function evaluations was 334,247 for the old, and 142,328 for the
new method, meaning 57% improvement for the new technique. The relative im-
provement measured as the average of percentages was 15%, saying that, again,
the improvements were larger on hard to solve problems. Here EX2 played also an
important role, although the whole improvement cannot be explained only by this
problem.

The sum of gradient evaluations was 209,421 for the old, and 89,072 for the new
algorithm meaning an improvement of 57%. The relative improvement expressed
as the average of percentages was 15% for the gradient evaluations. The similar
figures for the Hessian evaluations were 22,151, and 9,456 (57% improvement),
and 16% relative improvement. These improvement results are basically the same
as the NFE figures, showing that these efficiency indicators are quite dependent.

The total number of iterations was 46,375 for the old, and 18,118 for the new
algorithm with 61% improvement. The average of percentages gives a 15% im-
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Table 2. Numerical results with all of the available accelerating devices. The given efficiency indic-
ators are the required CPU time in seconds (CPUt), the maximal list length necessary (MLL), and the
number of objective function evaluations (NFE).6 denotes the sum of the given efficiency indicator
for the old and new algorithms, followed by the relative compound indicator for the new method
compared to that of the old one as per cents. The last line contains the average of the percentages
(AoP) for the respective columns.

Problem CPUt MLL NFE

name dim. old new old new old new

% % %

S5 4 0.27 0.28 104 10 10 100 144 144 100

S7 4 0.39 0.40 103 14 14 100 149 149 100

S10 4 0.58 0.52 90 16 16 100 158 141 89

H3 3 0.34 0.34 100 9 20 222 303 297 98

H6 6 6.13 6.27 102 78 65 83 1,681 1,725 102

GP 2 8.87 0.29 3 470 153 32 15,694 536 3

SHCB 2 0.20 0.03 15 49 22 44 734 122 16

THCB 2 0.07 0.06 86 16 20 125 347 291 83

BR 2 0.06 0.03 50 9 11 122 202 91 45

RB 2 0.06 0.05 83 11 11 100 316 278 88

RB5 5 4.05 4.09 101 72 72 100 4,234 4,234 100

L3 2 1.90 0.28 15 138 57 41 2,225 342 15

L5 2 0.62 0.63 102 31 32 103 676 681 100

L8 3 0.07 0.07 100 9 9 100 93 93 100

L9 4 0.14 0.14 100 13 13 100 122 122 100

L10 5 0.25 0.25 100 15 15 100 142 142 100

L11 8 0.89 0.90 101 28 28 100 214 214 100

L12 10 1.89 1.88 100 36 36 100 288 288 100

L13 2 0.03 0.03 100 9 9 100 86 86 100

L14 3 0.08 0.08 100 12 12 100 137 137 100

L15 4 0.14 0.15 107 19 19 100 155 155 100

L16 5 0.21 0.21 100 20 20 100 163 163 100

L18 7 0.56 0.56 100 26 26 100 235 235 100

Sch21 2 0.23 0.24 104 25 25 100 918 918 100

Sch31 3 0.05 0.04 80 6 6 100 12 112 100

Sch25 2 0.06 0.06 100 4 4 100 345 345 100

Sch27 3 6.60 6.63 100 236 236 100 3,597 3,597 100

Sch214 4 1.11 1.12 101 78 78 100 2,587 2,587 100

Sch218 2 0.05 0.00 0 7 4 57 290 26 8

Sch32 3 0.06 0.07 117 7 7 100 217 217 100

Sch37 5 0.17 0.18 106 32 32 100 374 374 100

Sch37 10 11.00 11.30 103 818 818 100 5,087 5,087 100

G5 5 6.37 6.42 101 32 32 100 5,869 5,869 100

G7 7 0.65 0.65 100 58 58 100 339 339 100

R4 2 0.23 0.04 17 40 31 77 1,053 201 19

R5 3 0.73 0.74 101 57 57 100 1,105 1,105 100
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Table 2. Continued

Problem CPUt MLL NFE

name dim. old new old new old new

% % %

R6 5 2.70 2.71 100 30 30 100 1,658 1,658 100

R7 7 9.19 9.22 100 41 41 100 2,934 2,934 100

R8 9 26.00 26.00 100 59 59 100 5,035 5,035 100

EX2 4 729.00 251.00 34 1,968 2,733 138 274,229 101,555 37

6 829.76 333.96 40 4,608 4,941 107 334,247 142,328 43

AoP 86 99 85

provement. The slight differences between the changes in the number of iterations
and in the necessary CPU time are to be explained by the fact that the necessary
computation is not simply proportional to the number of iterations, other factors
such as larger list administration costs can bias the CPU times.

Summarizing the numerical results with the sophisticated algorithm variants,
we can conclude that the new method proved to be advantageous on the test prob-
lems, although the improvements were smaller this time. Again, on harder to solve
problems the improvements were larger, and the improvements are obviously not
uniform: results on a few test problems can explain the majority of improvements
on the test set. The set of test problems showed a balanced picture with many inter-
esting details. The achieved improvements on the studied sophisticated algorithm
are very valuable and surprisingly large. It must be also mentioned that when all the
global minimizer points were to be located then the improvements were smaller.

4. Summary and Conclusions

The interval branch-and-bound algorithm for global optimization is converging to
the set of global minimizer points if the interval selection criterion is to choose
that interval from the listL which has the maximalp(f̂ , Y ) parameter value. The
user may setf̂ to the global minimum valuef ∗, if it is a priori known, or to the
iteratively updated lowest upper bound of the global minimum,f̃ (if additional
conditions are fulfilled). The latter parameter is always available, and thus no
previous information is needed to ensure convergence. Necessary and sufficient
conditions of the convergence are given.

To improve the efficiency, the new interval selection criterion can be combined
with the Moore–Skelboe criterion that chooses the subinterval with the minimal
lower bound on the objective function. This algorithm converges to the set of global
minimizer points under the mild condition that the applied utility function is strictly
monotonically increasing in both of its arguments.
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Table 3. Numerical results with all of the available accelerating devices. The given efficiency indic-
ators are the number of gradient evaluations (NGE), the number of Hessian evaluations (NHE), and
the number of iterations (NIT).6 denotes the sum of the given efficiency indicator for the old and
new algorithms, followed by the relative compound indicator for the new method compared to that of
the old one as per cents. The last line contains the average of the percentages (AoP) for the respective
columns.

Problem NGE NHE NIT

name dim. old new old new old new

% % %

S5 4 88 88 100 8 8 100 16 16 100

S7 4 86 86 100 8 8 100 18 18 100

S10 4 90 80 88 8 7 87 18 17 94

H3 3 193 190 98 23 23 100 39 38 97

H6 6 1,137 1,190 104 83 89 107 193 192 99

GP 2 9,195 231 2 623 1 0 2,256 76 3

SHCB 2 435 62 14 27 4 14 121 17 14

THCB 2 215 177 82 24 19 79 49 41 83

BR 2 123 47 38 14 4 29 29 12 41

RB 2 180 153 85 18 12 67 43 38 88

RB5 5 2,878 2,878 100 330 330 100 419 419 100

L3 2 1,326 172 12 105 9 8 289 47 16

L5 2 406 408 100 31 32 103 87 86 98

L8 3 57 57 100 6 6 100 11 11 100

L9 4 75 75 100 8 8 100 13 13 100

L10 5 88 88 100 9 9 100 15 15 100

L11 8 130 130 100 10 10 100 23 23 100

L12 10 179 179 100 13 13 100 30 30 100

L13 2 49 49 100 5 5 100 10 10 100

L14 3 79 79 100 8 8 100 15 15 100

L15 4 89 89 100 8 8 100 17 17 100

L16 5 90 90 100 7 7 100 19 19 100

L18 7 132 132 100 9 9 100 27 27 100

Sch21 2 582 582 100 54 54 100 113 113 100

Sch31 3 66 66 100 6 6 100 14 14 100

Sch25 2 207 207 100 28 28 100 50 50 100

Sch27 3 2,217 2,217 100 252 252 100 430 430 100

Sch214 4 1,599 1,599 100 161 161 100 307 307 100

Sch218 2 176 15 8 21 2 9 44 3 6

Sch32 3 126 126 100 13 13 100 28 28 100

Sch37 5 228 228 100 34 34 100 45 45 100

Sch37 10 2,685 2,685 100 202 202 100 696 696 100

G5 5 3,648 3,648 100 331 331 100 351 351 100

G7 7 175 175 100 9 9 100 40 40 100

R4 2 650 102 15 52 5 9 154 28 18

R5 3 750 750 100 72 72 100 107 107 100
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Table 3. Continued

Problem NGE NHE NIT

name dim. old new old new old new

% % %

R6 5 1,223 1,223 100 101 101 100 140 140 100

R7 7 2,295 2,295 100 169 169 100 204 204 100

R8 9 4,065 4,065 100 262 262 100 310 310 100

EX2 4 171,409 62,359 36 18,999 7,126 37 39,585 14,055 35

6 209,421 89,072 43 22,151 9,456 43 46,375 18,118 39

AoP 85 84 85

According to the present theoretical study, intervals with zero width inclu-
sion functions must be handled with special care in the proposed algorithms, even
though they are generally quite rare in real life unconstrained problems. The new
algorithm class promises better efficiency utilizing the easy to obtain information
of the relative place of the global minimum value within the inclusion interval of
the objective function for leading intervals.

An extensive computational study was completed on 40 standard test prob-
lems [4], using both simple and sophisticated algorithm variants. According to the
numerical investigations, the suggested algorithmic change improves all versions
substantially. The more difficult the problems to be solved, the larger the improve-
ments (at least on our problem set). The suggested new interval selection rules
seem to be an indispensable part of future interval optimization algorithms.
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